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This paper deals with the theoretical investigation of the effect of the Hall current and rotation on 

ferromagnetic fluids saturating in a porous medium under the varying gravity field. To find the exact 

solution for a ferromagnetic fluid layer contained between two free boundaries, we have used a linear 

stability analysis and normal mode analysis methods. A dispersion relation governing the effect of Hall 

current, rotation and magnetic field is derived. From the study, we have found that the Hall current has 

stabilizing effect on the system under the condition TA1 > P
ε2

2 M and λ > 0. For λ < 0,  Hall current 

has destabilizing effect on the system. Further, rotation is found to have stabilizing effect on the system 

for the case λ > 0 and destabilizing effect for λ < 0.  The effect of magnetic field on the system is to 

stabilize the system under the condition TA1 < 4 Mε
P22 and λ > 0 and to destabilize the system for λ 

< 0. The principle of exchange of stabilities is not satisfied for the present problem while in the absence 

of rotation and Hall current, it is found to be satisfied under certain condition. 

Keywords:  Hall current, Magnetic field, Ferromagnetic fluid, Rotation, Thermal stability 

 

1 Introduction 

Ferromagnetic fluid (also called ferrofluid or magnetic fluid) is electrically non-conducting 

colloidal suspensions of solid ferromagnetic particles in a non-electrically conducting carrier 

fluid like water, kerosene, hydrocarbon or organic solvent etc. These colloidal particles are 

coated with a stabilizing dispersing agent (surfactants) who prevents particle agglomeration 

even when a strong magnetic field gradient is applied to the ferromagnetic fluid. These 

suspensions are stable and maintain their properties at extreme temperatures and over a long 

period of time. Rosenweig (1985) has discussed, in detail, an authoritative introduction to this 
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subject in his celebrated monograph. In this monograph, he reviews several applications of heat 

transfer through ferromagnetic fluids. Ferromagnetic fluids have very large potential 

applications in electronic devices, mechanical engineering, material science, analytical 

instrumentation, medicines, optics, arts etc. Owing the applications of the ferromagnetic fluid, 

its study is important to researchers. Ferrofluid technology is well established and capable of 

solving a wide variety of technical problems. There are many successful applications of this 

engineering material and there is an immense scope of further research. There are various 

stability problems on ferromagnetic fluids. The convective instability, also known as Bénard 

convection (Chandrasekhar, 1981), is one of the instability of ferromagnetic fluid. Finlayson 

(1970) have studied the convective instability of the ferromagnetic fluid for a fluid layer heated 

from below in the presence of uniform vertical magnetic field and explained the concept of 

thermo-mechanical interaction in ferromagnetic fluids. Lalas and Carmi (1971) have discussed 

the thermo-convective stability of ferromagnetic fluids without considering the buoyancy 

effect. Many authors (Siddheswar, 1993, 95; Venkatasubramaniam, et al., 1994; Sunil, et al., 

2006, 07 and Aggarwal, et al., 2009) have considered the Bénard convection in ferromagnetic 

fluid in non-porous medium and many authors (Lapwood, 1948; Wooding, 1960 and Sunil, et 

al., 2008) have studied the stability of fluid flow through a porous medium.  A porous medium 

is defined as a solid with holes in it. It is characterized by the manner in which the holes are 

imbedded, how they are interconnected and the description of their location and shape. The 

flow of a fluid through isotropic and homogeneous porous medium is governed by Darcy’s 

law. In 1982, Sharma and Sharma have been discussed the rotation and solute gradient on the 

thermal instability of fluids through a porous medium. Rotation also plays an important role in 

the thermal instability of fluid layer. In case of stationary convection, rotation stabilizes the 

fluid layer while magnetization parameters destabilize the fluid (Chand and Bala, 2013).  

The Hall currents are also likely to be important in flows of laboratory plasma as well as in 

many geophysical and astrophysical situations. When a strong electric field is applied, the 

electric conductivity is affected by the magnetic field. As a result, the conductivity parallel to 

the electric field is reduced and hence, the current is reduced in the direction normal to both 

electric and magnetic field. This phenomenon is called Hall Effect and the current is known as 

Hall current. The effect of Hall current on thermal instability has also been discussed by several 

authors (Gupta, 1967; Raghavachar, et al., 1988; Sharma, et al., 1993; Sharma, et al., 2000; 

Sunil, et al., 2005 and Gupta et al., 2011, 12).  Aggarwal and Makhija (2014) have studied the 

effect of Hall current on thermal stability of ferromagnetic fluids heated from below in porous 
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medium in the presence of horizontal magnetic field. They found that Hall currents have a 

destabilizing effect while magnetization has a stabilizing effect. In all the above studies, the 

gravity field was assumed to be constant. However, the earth’s gravity varies with height from 

its surface. But usually we neglect this variation of gravity for laboratory purposes and treat 

the field as a constant. This may not be the case for large scale flows in the ocean or the 

atmosphere. Considering the gravity as a quantity varying with distance from the centre can 

become imperative.  

In the present study, we have studied the effect of Hall current and Rotation on thermal stability 

of ferromagnetic fluids saturating in a porous medium under varying gravity field. We have 

assumed that the gravity is varying as, g = λg0, where g0 is the value of g at the Earth’s surface, 

which is always positive and λ can be positive or negative as gravity increases or decreases 

upwards from its value g0.  

2. Mathematical Formulation of the Problem 

 We consider an infinite, incompressible, electrically non-conducting and thin layer of 

ferromagnetic fluid which is bounded by the planes z = 0 and z = d, as shown in Fig 1. The 

fluid layer is heated from below so that a uniform temperature gradient β = dT is  

dz maintained within the fluid. The system is acted upon by a uniform vertical magnetic field 

𝐇⃗  (0,0, H) and variable gravity field 𝐠⃗  (0,0, −g), where g = λg0, g0 is the value of g at z = 0 

which is always positive and λ can be positive or negative as gravity increases or decreases 

upwards from its value g0. The whole system is assumed to be rotating about z-axis with 

uniform angular velocity 𝛀⃗  = (0,0, Ω0). The ferromagnetic fluid layer is assumed to be flowing 

through an isotropic and homogeneous porous medium of porosity ε which 

 

Fig.1: Geometrical Configuration 
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The governing equations of motion of a ferromagnetic fluid under the Boussinesq 

approximation, saturating a porous medium following darcy’s law are as follows:  

The equation of continuity, conservation of momentum, temperature and equation of state of 

ferromagnetic fluids through porous medium are  

∇. 𝐪⃗  = 0                      (1)  

𝐪⃗  

∇p − ρ λg0𝐞𝐳 − 1 ν𝐪⃗  + M∇𝐇⃗  + µe   × 𝐇⃗  +𝐪⃗  × 𝛀⃗  ∇ × 

𝐇⃗ 

 ρ0 k1 ρ0 4πρ0 

            (2) E T         (3)  

ρ = ρ0[1 − α(T − T0)]                  (4)  

where,  𝐪⃗ (u, v, w) = fluid velocity, p = the fluid pressure, ρ = fluid density, ρ0 = reference 

density, T = temperature,T0 = reference temperature, g0 = gravitational acceleration,                 α 

= thermal coefficient of expansion, μe = magnetic permeability, ν = kinematic viscosity,    κ = 

thermal diffusivity, E = ε + (1 − ε) ρρ0s ccsi, ρs , cs = density and specific heat of solid/porous 

material,  ρ0 , ci = density and specific heat of fluid.  

Since ferromagnetic fluids respond so rapidly to a magnetic torque, so we assume the following 

conditions to be hold  

𝐌⃗  × 𝐇⃗  = 0                      (5)  

In ferrohydrodynamics, the free charge and the electric displacement are assumed to be absent, 

therefore Maxwell’s equations becomes  

∇. 𝐁⃗  = 0                                ∇ × 𝐇⃗  = O                  (6) In Chu formulation of electrohydrodynamics, 

the relation between the magnetic field, magnetization and magnetic induction is given by  

𝐁⃗  = µ0𝐇⃗  + 𝐌⃗                     (7)  

Here, 𝐌⃗  stands for magnetization, 𝐇⃗  stands for the magnetic field intensity and 𝐁⃗  for 

magnetic induction.  

We assume that the magnetization is aligned with the magnetic field, but allow a dependence 

on the magnitude of the magnetic field and temperature, which can be expressed as  

𝐌⃗  = 𝐇⃗  M𝐇⃗  , 𝐓⃗                      (8)  

H 

Where, 𝐇⃗  = (0,0, H), i.e. 𝐇⃗  = H𝐞𝐳,  𝐞𝐳 is the unit vector along z-axis and H is the uniform 

magnetic field of the fluid layer and  

1 

ε 
 
∂𝐪⃗    

∂ t 
+ 
1 

ε 
( 𝐪⃗     . ∇ ) 
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 ,  H = 𝐇⃗ , M = 𝐌⃗  and B = 𝐁⃗             

The Maxwell’s equations in the presence of Hall currents is given by  

 × 𝐪⃗  × 𝐇⃗   × 𝐇⃗  × 𝐇⃗      (9) and     ∇. 𝐇⃗  = 0                           (10)  

Generally, for completing a system, it is necessary that the equation of state will specify M in 

two thermodynamics variables (say H and T), but in present study, we consider that the 

magnetization is independent of the magnetic field intensity i.e. M = M(T). Thus, as a first 

approximation, we assume that  

 M = M0[1 − γ(T − T0)]                           (11)  

Where M0 is the magnetization at T = T0
 and  

M0 H  

The basic state is assumed to be quiescent state which is given by  

𝐪⃗  = 𝐪⃗ b = (0 , 0 , 0), ρ = ρb(z), p = pb(z), 𝐌⃗  = 𝐌⃗ b = 𝐌⃗ b(z), 𝐇⃗  = 𝐇⃗ b = 𝐇⃗ b(z), 𝐁⃗  = 𝐁⃗ b  

T = Tb(z) = −βz + T0, ρ = ρb = ρ0(1 + αβz), M = M0(1 + γβz)              (12)  

  

3             The Perturbations Equations  

Let 𝐪⃗ ′, p′, ρ′, M′, θ and  𝐡hx , hy , hz denote respectively the small perturbations in  

𝐪⃗  , p , ρ , M , T and 𝐇⃗ . Therefore the new variables becomes  

𝐪⃗  = 𝐪⃗ b + 𝐪⃗ ′, p = pb + p′, M = Mb + M′, 𝐇⃗  = 𝐇⃗ b + 𝐡  , T = Tb + θ  

Applying these perturbations and linearising equations (1) – (11), we get  

∇. 𝐪⃗ ′ = 0                                  (13)  

1 ∂𝐪⃗ ′ = − 1 ∇p′ + λg0αθ𝐞𝐳 − 1 ν𝐪⃗ ′ − γ M0∇H θ𝐞𝐳 + µeH ∇ × 

𝐡   × 𝐞𝐳 ε ∂t ρ0 k1 ρ0 4πρ0 

𝐪⃗ ′ × 𝐞𝐳   

                                     (14)  

E                                   (15)  

 × 𝐪⃗ ′ × 𝐞𝐳 ×  𝐡 × 𝐞𝐳                (16)  

∇.  𝐡 = 0                                         (17)  

Writing the scalar components of equation (14) and eliminating ∇p′, u, v, hx, hy between them 

by using equations (13) – (17), we get  
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λg

               (18)  

Again from equation (14), taking z-component, we get  

 µeH ∂ξ 2Ω0 ∂w 

 νζZ                          (19)  

From equation (15), taking z-component, we obtain  

E w                            (20)  

From equation (16), taking z-component, we get  

2 hz 
H ∂w H ∂ξ         

               (21)  

Again from equation (16), taking z-component, we obtain 

H∂hz 

         

                (22)  

 4πNe ∂z 

   

4                   Normal Mode Analysis  

Now we analyze the perturbations into normal modes by assuming the following forms of 

perturbation quantities  

w, θ, ξ, ζZ, hz = [W(z), ʘ(z), X(z), G(z), K(z)]expikx + iky + σt               (23)  

 

Where kx, ky are wave numbers along x and y directions respectively, a = kx
2 + ky

2 is the 

resultant wave number of the disturbance and σ is the growth rate. (Complex constant) For 

functions with this dependence on x, y and t,   

Using equation (23), equations (18) – (22) in non-dimensional form becomes  

                                 (24)  

 +  G = eHd DX + 2Ω 0d 

DW σ 1 µ 

ε P1 4πρ0ν νε 

                       (25)  
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1 
1 
2 

γM 0∇Hʘ + µeHd D(D2 − a2)K − 2Ω

0d3 D  

 ρ0αλ 4πρ0ν εν 

κ 

(D2 − a2 − σp2)K = − Hd
εη DW + 4πNeη

Hd DX        

              (27)  

(D2 − a2 − σp2)X = − Hd
εη DG − 4πNeηd

HD(D2 − a2)K                   (28)  

Where, we have expressed the coordinates in non-dimensional parametric form by using the 

following non-dimensional parameters,(x , y , z) = (dx∗ , dy∗ , dz∗)  d∗ d∗ 

dz d
∗, p1 = κ

ν is the prandtl number, p2 = η
ν is the magnetic prandtl number and P = d

k (dropping 

∗ for convenience)  

5                   Exact solution for free boundaries  

Here, we have considered that both the boundaries are free and perfect conductor of heat. The 

boundary conditions for the problem are (Chandrasekhar, 1981)  

W = D2W = 0 , ʘ = DG = 0, K = DX = 0 when z = 0 and 1                 (29)  

Eliminating ʘ, K, X and G from equations (24) – (28), we obtain  

λa2RfW W 

MTAD2 

+TA{(D2 − a2 − σp2)
2 +MD2(D2 − a2)} 

 

 − MQD4(D2 − a2) ∙ W  

                                 (30)  

Where Rf 0 ρ0αλ νκ
d4 is the Rayleigh number for ferromagnetic fluids with 

varying gravity field. If λ = 1, then this reduces to general Rayleigh number (Aggarwal and 

Makhija,  

 μ H2d2H 2 

 is the Chandrasekhar number, M =  is the Hall parameter and 4πNeη 

TA =   

(D2 − a2 − Eσp1)ʘ = − βd 2 W                         (26)  

=  g − 
γ M 0 ∇H 

 
αβ 
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If  , then Rf < R , this implies that the convection starts in the ferrofluid at a 

higher thermal Rayleigh number and If  λ < 0 , then Rf > R , which implies that the convection 

starts in the ferrofluid at a lower thermal Rayleigh number.  

Using the boundary conditions (29) we can show that all the even order derivatives of W must 

vanish at boundaries z = 0 and 1. Hence the proper solution for W characterizing the lowest 

mode is   

                                                        W = W0 sin πz           (31)  

Where,  W0 is a constant. Substituting the proper solution (31) in equation (30), we get  

 iσ1 1 (1 + x) 

R 

λ 

(1 + x + iσ1p2)(1 + x + iσ1Ep1)  iσ

 1 

+Q+ Q1ε 

  ε P 

+ 2MTA1 + TA1{(1 + x + iσ1p2)
2 + M(1 + x)} 

−1 

    

 ε P 

                                    (32)  

where R1 = π R4f , Q1 = επ Q2 , x = π a22 , iσ1 = π σ2 , P = π2Pl , TA1 = TπA4  

Equation (32) is the required dispersion relation including the effect of Hall current, rotation 

and magnetic field on a layer of ferromagnetic fluid saturating in a porous medium under the 

influence of varying gravity field. In the absence of rotation and constant gravity field, this 

relation agrees with the dispersion relation derived by Aggarwal and Makhija (2012) for 

Ferromagnetic fluid, if solute concentration is removed from his study.  

6              The Case of Stationary Convection  

For the case of stationary convection, the marginal state will be characterized by σ1 = 0, 

therefore the dispersion relation (32) reduces to  

(1 + x) Q1ε2(1 + x) 

 1 (1 + x)2 λxε2  P + Q12ε2 + 2MTA1εQ1 + TA1(1 + x + M) 

R1 = P λx + 1 + xP+ M + Q1   

λ x ε 2 
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                                 (33)  

The dispersion relation (33) expresses the modified Rayleigh number R1 as a function of the 

rotation parameter (TA1), medium permeability (P), Hall current parameter (M), magnetic field 

parameter (Q1) and dimensional wave number x. In the absence of rotation (TA1 = 0), the above 

Rayleigh number reduces to   

(1 + x) 

 1 (1 + x)2 Q1(1 + x)  P + Q1 

 R1 = P λx + λx 1 + xP+ M + Q1  

                                 (34)  

which agree with the expression for R1 derived by Aggrawal and Makhija (2012) if the solute 

gradient S1 is vanishing.  

In the above expression (34), if we remove Hall current parameter (M), the expression for 

Rayleigh number R1 will become identical with the expression for R1 derived by Sharma et al 

(71) in the absence of solute gradient.  

In order to investigate the effects of rotation (TA1), Hall current (M) and magnetic field (Q1), 

we examine the behavior of dR1 , dR1 and dR1  analytically.  

 dTA1 dM dQ1 

 + 1 + x + M 

dR1 

= (1 +2x) 1TA+1x + M  dTA1 λxε

  P + Q1 

                                 (35)  

This equation confirms that for stationary convection, rotation has a stabilizing effect if λ > 0 

and destabilizing effect for λ < 0.  

 

 ε(1 + x) T 

 2   

 P 

                                 (36)  

This equation shows that the Hall current has stabilizing effect on the system if TA1 > P
ε2

2 M 

and λ > 0. In the absence of rotation, Hall current has destabilizing effect on the system for λ > 

0 and stabilizing effect for λ < 0.  

dR 1 

dM 
= 
( 1 + x ) Q 1 

λ x ε 2 

 
P 

+  MT A 1 + ε Q 1   
 A 1 

√ M 
− 

ε 

P 
 

 
1 + x + M 

+ Q 1 
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(1 +2x) (1 + x + M) ε2(1P2+ x) + 2QP1ε2 + 2εPMTA1 − TA1 

dR1 xε 

 = 2   

dQ1 1 + x + M λ P

 + Q1 

                                 (37)  

This shows that in the absence of rotation, magnetic field has stabilizing effect on the system 

for λ > 0 and destabilizing effect for λ < 0 , but if rotation is present on the system the stabilizing 

effect of magnetic field depends on the condition that TA1 < 4 Mε
P22 and λ > 0. The dispersion 

relation (33) is analyzed numerically also. In Fig.2, R1 is plotted against modified rotation 

parameter TA1 for M = 10, P = 0.13, ε = 0.15, Q1 = 10, λ > 0 ( λ = 2), x = 1, 8, 15. In Fig.3, R1 

is plotted against modified rotation parameter TA1 for M = 10, P = 

0.13, ε = 0.15, Q1 = 10, λ < 0 ( λ = −2), x = 1, 8, 15 and in Fig.4, R1 is plotted against wave 

number x for M = 10, P = 0.13, ε = 0.15, Q1 = 10, λ = 2, TA1 =20, 80, 140. Fig.2 and Fig.4 

shows the stabilizing effect of rotation for λ > 0, as Rayleigh number increases with the increase 

in modified rotation parameter while Figure 3 shows the destabilizing effect of rotation for λ < 

0. In fig.5, R1 is plotted against Hall current parameter M for Q1 = 10, P = 0.13, ε = 0.15, λ = 

2, x = 1, 8, 15. In fig.6, R1 is plotted against Hall current parameter for Q1 = 10,  P = 0.13, ε = 

0.15, λ = −2, x = 1, 8, 15 and in fig.7, R1 is plotted against wave number x for  P = 0.13, ε = 

0.15, Q1 = 10, λ = 2, TA1 = 100, M = 

0.1,0.2,0.3. Fig.5 and 7 shows the stabilizing effect of Hall current as the Rayleigh number 

increases with the increase in Hall current parameter M for the case λ > 0 while Fig.6 shows the 

destabilizing effect of Hall current for λ < 0.  In fig.8 shows the variation of R1 with  

modified magnetic field parameter  Q1 for  TA1 = 10, P = 0.13, ε = 0.15, λ = 2, x = 1, 8, 15. In 

Fig.9 shows the variation of R1 with modified magnetic field parameter  Q1 for  TA1 = 10, P = 

0.13, ε = 0.15, λ = −2, x = 1, 8, 15 and in fig.10, R1 is plotted against wave number for  TA1 = 

10, ε = 0.15, λ = 2,  Q1 = 100, 200, 300. Fig.8 and Fig.10 shows the Rayleigh number increases 

with the increase in modified magnetic field parameter  Q1 which confirms the stabilizing effect 

of magnetic field on the system for the case  λ > 0 while Fig.9 shows the destabilizing effect of 

Hall current for λ < 0.  
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7       Conclusions  

We have concluded following results from the present study:  

1- For stationary convection, when TA1 > P
ε2

2 M and gravity increases upwards (i.e. λ > 

0), the Hall Current has stabilizing effect on the system. In the absence of rotation,  

Hall current has to stabilize the system for the case λ > 0 and destabilizing effect for λ 

< 0.  

2- When gravity increases upward (i.e λ > 0), the rotation has stabilizing effect on the 

system whereas it has destabilizing effect for λ < 0.  

3- For stationary convection, in the absence of rotation, magnetic field has stabilizing 

effect if  λ > 0, while it has destabilizing effect when λ < 0, but in the presence of 

rotation, the stabilizing effect of magnetic field depends on the condition TA1 < 4

Mε
P22 and λ > 0.  
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4- Principle of exchange of stabilities in not satisfied for the problem. In the absence of 

rotation and hall current, it is valid under the condition γM ∇H .  
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